Question:
Find the unit’s digit in (264)^102 + (264)^103
A ) 0
B ) 1
C ) 2
D ) 3
Answer: A) 0
Explaination :
Required unit’s digit = unit’s digit in
(4)^102 + (4)^103.
now, 4^2 gives unit digit 6.
(4)^102 gives unit digit 6.
(4)^103 gives unit digit of the product
(6 x 4) i.e., 4.
Hence, unit’s digit in (264)^102 + (264)^103
= unit’s digit in (6 + 4) = 0
Find the unit’s digit in (264)^102 + (264)^103
A ) 0
B ) 1
C ) 2
D ) 3
Answer: A) 0
Explaination :
Required unit’s digit = unit’s digit in
(4)^102 + (4)^103.
now, 4^2 gives unit digit 6.
(4)^102 gives unit digit 6.
(4)^103 gives unit digit of the product
(6 x 4) i.e., 4.
Hence, unit’s digit in (264)^102 + (264)^103
= unit’s digit in (6 + 4) = 0
0 comments:
Post a Comment